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The Paper

Figure: The Astronomical Journal, 140:2086–2094, 2010 December
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What is Spatial Filtering?

Definition

Spatial filtering is the study of using a known array spatial
geometry to enhance or suppress signals arriving from
specific directions to the array.
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The Problem
▶ Radio Frequency Interference (RFI) is a problem! How

can we recover as much of the celestial signal as
possible?

Credit: Claude for base SVG code

This Paper

▶ How can we extend existing theory of spatial filtering
for single antenna arrays to multibeam receivers?

▶ Uses Murriyang 20 cm multibeam receiver and spatial
filtering techniques to recover from RFI-contaminated
data 72% of the SNR of interference-free region.
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Where This Sits in the Literature
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A Crash Course in Spatial Filtering

Definition

Spatial filtering is the study of using a known array spatial
geometry to enhance or suppress signals arriving from
specific directions to the array.
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A Crash Course in Spatial Filtering

Credit: https://www.luisllamas.es/en/arduino-exponential-low-pass/
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Spatial Filtering Playbook
1. Take complex voltage data from n antennas and T time

samples to create a data matrix X with shape n × T .

Example

X =


a11 a12 · · · a1T
a21 a22 · · · a2T
...

...
. . .

...
an1 an2 · · · anT

 ∈ Cn×T

2. Form the covariance matrix C = 1
T−1XX

H which is
n × n Hermitian.

3. Decompose the matrix using eigendecomposition into
the form C = UΛUH.

4. Use this to adjust the covariance matrix in order to
remove interference:
4.1 Nulling eigenvalues,
4.2 Shrinking eigenvalues,
4.3 Project data into a subspace orthogonal to the

interferers.
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Important Assumptions!
1. The interferer is much stronger than the celestial signal

of interest and arrives from a different direction.

Credit: Claude for base SVG code

2. The Fourier spectrum of measured signal with q
interferers at antenna i is

Si (f ) =

Gain︷︸︸︷
gAi

Ai (f )︸ ︷︷ ︸
Celestial

+
∑
q

gIq Iq(f )︸ ︷︷ ︸
Interference

+Ni (f )︸ ︷︷ ︸
Noise

.

3. The power of the noise V [Ni ] = σ2 is approximately
equal for each antenna. If not true use noise whitening
to correct.

4. The signal components (Celestial, Interference, Noise)
are all independent. Therefore we can decompose C
into C = CA︸︷︷︸

Celestial

+ CI︸︷︷︸
Interference

+ CN︸︷︷︸
Noise

.

5. The astronomical signal is insignificant over the
integration time so that C ≈ CI + CN.
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Covariance Matrix Blocks

Under these assumptions we can decompose the covariance
matrix further into blocks:

C =
[
UI UN

] [ΛI + σ2Iq 0
0 σ2Ip−q

] [
UI

H

UN
H

]
where I represents interferers and N represents uncorrelated
systematic noise.
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Observed Eigenvalues

11 / 25



Pulsar Journal
Club

Kocz et al. 2010

Jay Smallwood

Spatial Filtering -
A Working
Definition

What’s the
Problem?

Relevant Literature

Spatial Filtering
Crash Course

Experimental
Results

Conclusions

Appendix

Methods of RFI Removal - Eigenvalue Nulling

Set the first q eigenvalues to zero and reconstruct the
covariance matrix:

C =
[
UI UN

] [ΛI + σ2Iq 0
0 σ2Ip−q

][
UI

H

UN
H

]
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Methods of RFI Removal - Eigenvalue Nulling

Set the first q eigenvalues to zero and reconstruct the
covariance matrix:

C =
[
UI UN

] [ΛI + σ2Iq 0
0 σ2Ip−q

][
UI

H

UN
H

]

Corrected:

C̃ =
[
UI UN

] [0 0
0 σ2Ip−q

] [
UI

H

UN
H

]
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Methods of RFI Removal - Eigenvalue Shrinking

Shrink the first q eigenvalues to be the same size as the last

p − q eigenvalues λ̃ =
∑p

j=q+1 λj

p−q , i = 1, ..., q.

C =
[
UI UN

] [ΛI + σ2Iq 0
0 σ2Ip−q

][
UI

H

UN
H

]
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Experiment Design

▶ Used the Murriyang 20 cm multibeam receiver to
observe the Vela pulsar.

▶ RFI present at 1438.5 MHz from two interferers.
▶ Compare the signal to noise of the pulsar averaged over

4 pulses between four methods:

1. No correction,
2. Eigenvalue nulling,
3. Eigenvalue shrinking,
4. Long-term subspace projection of short-term data

(Foreshadowing!).
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Observed Eigenvalues
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Be Careful Blindly Applying This!

Figure: Applying blindly to pulsar data can destroy the pulsar
signal.
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Interference-contaminated Results

Figure: Top - No correction. Top-middle - eigenvalue shrinking.
Bottom-middle - eigenvalue nulling. Bottom - primary &
secondary eigenvalue shrinking only for correct region.
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Interference-contaminated Results
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Long-term covariance, short-term corrections

▶ To avoid accidentally destroying pulses - integrate the
covariance matrix over 1s and then adjust data on a
1ms timescale.

▶ Integrated covariance matrix is:

C̄ = P̄NC̄P̄N + P̄IC̄P̄I

▶ This yields two long-term filters (NB: not equivalent):

C̃N = P̄NCP̄N

C̃I = C− P̄ICP̄I

where C is the covariance matrix of 1 ms of data.
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Methods of RFI Removal - Subspace Projection

Example

Take C̃I as an example:

C̄ =
[
ŪI ŪN

]
Λ̄

[
ŪI

H

ŪN
H

]

C̃I = C− P̄ICP̄I

where P̄I = ŪIŪI
H.

▶ Projection operator: P = X (XHX )−1XH

▶ Think regression! H = X (XTX )−1XT .

▶ In our case, P̄I = ŪI (ŪI
HŪI )

−1︸ ︷︷ ︸
=I

ŪI
H = ŪI ŪI

H due to

orthonormal eigenvectors.
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Methods of RFI Removal - Subspace Projection

Credit: https://sakai.unc.edu/access/content/group/2842013b-58f5-4453-aa8d-3e01bacbfc3d/
public/Ecol562_Spring2012/images/lectures/lecture1/projection3.png
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ŪI
H = ŪI ŪI
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Long-term filter results
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Alternatives to long-term filter

▶ Using statistical tests to derive number of interferers.

▶ If interference not present - no need to apply filter.

▶ Can also develop theory on the direction of the
eigenvalues - if from boresight then likely to be celestial
source.
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Conclusions

▶ Spatial filtering is a powerful method for reducing RFI
contamination of data. Recovered pulses with 72% of
the SNR of inteference-free region.

▶ Eigenvalue shrinking is often a more powerful method
than eigenvalue nulling but may destroy pulsar signals.

▶ Long-term subspace projection performs better than
eigenvalue methods in both interference-contaminated
and interference-free regions.
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Appendix: Applying Corrected Covariance Matrix

Applying Corrected Covariance Matrix to Data

If X is the data matrix with covariance matrix C and
corrected covariance matrix C̃ then the corrected data X̃ is:

X̃ = XC−0.5C̃0.5
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