

- Electrical & Computer Engineering, Brigham Young University, Provo, UT 84602, USA
 Breakthrough Listen Project, U.C. Berkeley, Berkeley, CA 74707, USA
- Naval Information Warfare Center, Charleston, SC 29401, USA
- Naval Information Wartare Center, Charleston, SC 29401, USA
 Correspondence: warnick@ee.bvu.edu

Whipple et al. 2023

Jay Smallwood / Journal Club

08 July 2025

Jay Smallwood /

What's the Problem?

Relevant Literature

Spatial Filtering Crash Course

System Architecture

Results

Can we do bet

Outline

What's the Problem?

Relevant Literature

Spatial Filtering Crash Course

System Architecture

Results

Can we do better?

Whipple et al. 2023 Jay Smallwood /

What's the Problem?

Relevant Literature

Spatial Filtering Crash Course

System Architecture

culto

an we do bett

What is Spatial Filtering?

Whipple et al. 2023

Jay Smallwood / Journal Club

What's the

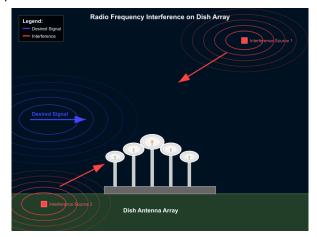
Problem?

Spatial Filtering Crash Course

System Architectur

esults

an we do better?


Definition

Spatial filtering is the study of using a known array spatial geometry to enhance or suppress signals arriving from specific directions to the array.

The Problem

▶ Radio Frequency Interference (RFI) is a problem! How can we recover as much of the celestial signal as possible?

Credit: Claude for base SVG code

Whipple et al. 2023

Jay Smallwood / Journal Club

What's the Problem?

Relevant Literature

Spatial Filtering Crash Course

System Architectur

esults

The Problem

- Radio Frequency Interference (RFI) is a problem! How can we recover as much of the celestial signal as possible?
- Can we do this fast enough in real time on GPUs?
 - Raw voltage streams are not saved at fine resolution this cannot be done offline.

Whipple et al. 2023

Jay Smallwood / Journal Club

Problem?

What's the

Relevant Literature

Crash Course

rchitect

sults

The Problem

- Radio Frequency Interference (RFI) is a problem! How can we recover as much of the celestial signal as possible?
- Can we do this fast enough in real time on GPUs?

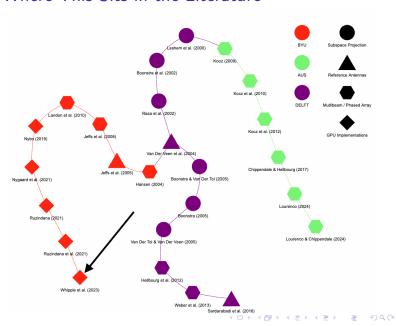
This Paper

- Currently the most developed RFI-mitigation system via spatial filtering on GPUs.
- ► Presents a proof-of-concept system for a 4x4 Phased Array Feed in a laboratory setting.
- ➤ Shows that this system works for both a moving narrowband RFI tone and a 50 kHz bandwidth moving wideband RFI tone.

Whipple et al. 2023

Jay Smallwood / Journal Club

What's the Problem?


Relevant Literature

Spatial Filtering Crash Course

System Architecture

esults

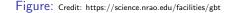
Where This Sits in the Literature

Whipple et al. 2023

Jay Smallwood /

Vhat's the Problem?

Relevant Literature


Spatial Filtering Crash Course

System Architecture

esults

BYU - Green Bank Telescope

Whipple et al. 2023

Jay Smallwood / Journal Club

Relevant Literature

Spatial Filtering

System Architecture

Results

1. Take complex voltage data from n antennas and T time samples to create a data matrix X with shape $n \times T$.

Example

$$\mathbf{X} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1T} \\ a_{21} & a_{22} & \cdots & a_{2T} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nT} \end{bmatrix} \in \mathbb{C}^{n \times T}$$

Whipple et al. 2023 Jay Smallwood /

Journal Club

Relevant Literatuu

Spatial Filtering Crash Course

Architectu

esults

n we do bette

- 1. Take complex voltage data from n antennas and T time samples to create a data matrix X with shape $n \times T$.
- 2. Form the covariance matrix $\mathbf{C} = \mathbf{X}\mathbf{X}^{\mathsf{H}}$ which is $n \times n$ Hermitian.

Example

$$\mathbf{C} = \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1n} \\ \overline{\sigma_{12}} & \sigma_2^2 & \cdots & \sigma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \overline{\sigma_{1n}} & \overline{\sigma_{2n}} & \cdots & \sigma_n^2 \end{bmatrix}$$

Whipple et al. 2023

Jay Smallwood / Journal Club

What's the Problem?

Relevant Literature

Spatial Filtering Crash Course

System Architecture

Results

- 1. Take complex voltage data from n antennas and T time samples to create a data matrix X with shape $n \times T$.
- 2. Form the covariance matrix $\mathbf{C} = \mathbf{X}\mathbf{X}^{\mathsf{H}}$ which is $n \times n$ Hermitian.
- 3. Decompose the matrix using eigendecomposition into the form $\mathbf{C} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\mathsf{H}}$.

Example

$$\mathbf{C} = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_n \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix} \begin{bmatrix} \mathbf{u}_1^H \\ \mathbf{u}_2^H \\ \vdots \\ \mathbf{u}_n^H \end{bmatrix}$$

Whipple et al. 2023

Jay Smallwood / Journal Club

Problem?

Spatial Filtering

System

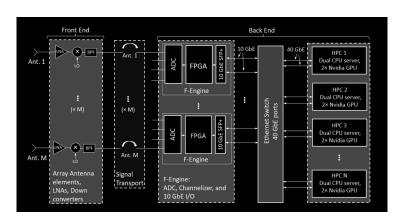
Results

- 1. Take complex voltage data from n antennas and T time samples to create a data matrix X with shape $n \times T$.
- 2. Form the covariance matrix $\mathbf{C} = \mathbf{X}\mathbf{X}^{\mathsf{H}}$ which is $n \times n$ Hermitian.
- 3. Decompose the matrix using eigendecomposition into the form $\mathbf{C} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\mathsf{H}}$.
- 4. Use this to adjust the beamforming weights in order to remove interference:
 - 4.1 Nulling eigenvalues,
 - 4.2 Shrinking eigenvalues,
 - 4.3 Orthogonal / Oblique subspace projection.

Jay Smallwood /

What's the Problem?

Relevant Literature


Spatial Filtering Crash Course

System Architectur

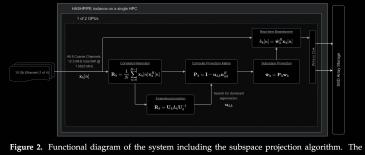
esults

System Architecture

Whipple et al. 2023

Jay Smallwood / Journal Club

What's the Problem?


Relevant Literature

System
Architecture

Results

System Architecture

- ▶ Uses a heterogeneous F-XB architecture:
 - F: Fourier transform done using FPGAs.
 - X: Correlation done using GPUs.
 - ▶ B: Beamforming done using GPUs.

Figure 2. Functional diagram of the system including the subspace projection algorithm. The received signal is correlated and then decomposed into its eigenvector and eigenvalue components. The strongest eigenvector is assumed to be a representation of the RFI. A projection is created using this eigenvector and applied to the signal to remove the interferer.

► Beamforming weights are updated using spatial filtering algorithms after the correlation step.

■ The state of the st

Whipple et al. 2023

Jay Smallwood / Journal Club

What's the Problem?

Relevant Literature

Crash Course System

Architecture

Results

System Architecture

- Uses a heterogeneous F-XB architecture:
 - F: Fourier transform done using FPGAs.
 - X: Correlation done using GPUs.
 - ▶ B: Beamforming done using GPUs.
- ▶ Data is sampled every 2.5 ns. Channellization is a 256-point FFT so resolution after channelization is \approx 640 ns.
- Original frequency band is centered at 10.2 GHz.
- ▶ Bandwidth is 96 channels of 1.5625 MHz each for total operating bandwidth of 150 MHz. 16 channels are discarded.
- ► Weights are updated using 4250 time steps which corresponds to 2.7 ms.

Whipple et al. 2023

Jay Smallwood / Journal Club

What's the Problem?

Relevant Literature

Spatial Filtering Crash Course

System Architecture

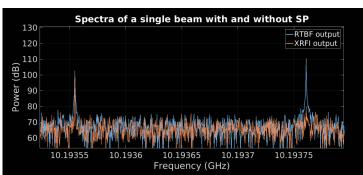
esults

Narrowband Cancellation

- ▶ Uses a 4x4 grid of antennas in a lab environment.
- ► Signal Generators for:
 - Signal of Interest stationary at array boresight.
 - Moving RFI signal beginning at 45 degrees to array.
- Scan duration was 6 seconds and RFI source moved 20 degrees in that time.
 - At cruising altitude, this is about 3.5x the speed of a plane (235 m/s vs 740 m/s).
 - ► For a GPS satellite, this is an order of magnitude faster.
- ➤ Signal-to-Noise Ratio was 25 dB, Interference-to-Noise Ratio was 35 dB.
- Beamforming weights were unity before filtering weight updates (i.e. no MaxSNR beamforming).

Whipple et al. 2023

Jay Smallwood / Journal Club


Problem?

Spatial Filtering

System Architecture

Results

Narrowband Cancellation Results

Figure 5. Expanded view of the real-time beamformer (RTBF) output with no RFI mitigation compared to real-time RFI mitigation (XRFI).

Whipple et al. 2023

Jay Smallwood / Journal Club

Vhat's the Problem?

Relevant Literature

Spatial Filtering Crash Course

System Architectu

Results

Wideband Cancellation

► Uses a 50kHz wide modulated signal at a 45 degree angle to signal of interest.

Jay Smallwood /

Problem?

Relevant Literature

Spatial Filtering Crash Course

System Architectur

Results

Wideband Cancellation Results

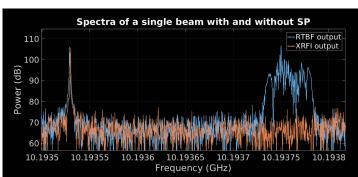


Figure 7. Expanded view of the spectrum of the beamformer output with no RFI mitigation compared to real-time RFI mitigation (XRFI) with modulated RFI source.

Whipple et al. 2023

Jay Smallwood / Journal Club

What's the Problem?

Relevant Literature

Spatial Filtering Crash Course

System Architectu

Results

Is it fast enough?

- ▶ 2.7 ms of data was used for each beamforming weight update.
- ► They report that the GPU section of processing was completed in 2.3 ms with active cancellation as opposed to 1.4 ms for only beamforming.
- No breakdowns are given, and it does not seem like PCle transfer speed was included in this total, which can be a significant bottleneck (Ruzindana 2021).

Whipple et al. 2023

Jay Smallwood / Journal Club

Problem?

Spatial Filtering

System Architectur

Results

Can we do better?

- Currently it supports only a 16-element phased array feed. ALPACA will have 69 elements when it is installed on GBT in late 2025.
 - ► Murriyang CryoPAF has 196!
- ► Only one eigenvalue is nulled, higher dimensional spaces with multiple interferers will require more eigenvalues.
 - It's also assumed that the strongest signal is the interference!
- Signal of interest and RFI are present in the same coarse channels - what if they are in different channels?
- How will this affect pulsar searching (see Kocz et al. 2010)? Can we use oblique projection instead (Hellbourg 2012)? Can we do better than oblique projection?

Whipple et al. 2023

Jay Smallwood / Journal Club

What's the Problem?

Spatial Filtering

System Architecture

esults

